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multiplied by the periodic code and then quantized via a quantizer. The signals are reconstructed
via multiplying the quantized signals by the same periodic code and then passing through an ideal
lowpass filter. To derive the condition for achieving an improvement on the SNR performance, first
the quantization operator is modeled by a deterministic polynomial function. The coefficients in the
polynomial function are defined in such a way that the total energy difference between the quantization
function and the polynomial function is minimized subject to a specification on the upper bound of
the absolute difference. This problem is actually a semi-infinite programming problem and our recently

proposed dual parameterization method is employed for finding the globally optimal solution. Second,
the condition for improving the SNR performance is derived via a frequency domain formulation. To
optimally design the periodic code such that the SNR performance is maximized, a modified gradient
descent method that can avoid the obtained solution to be trapped in a locally optimal point and
guarantee its convergence is proposed. Computer numerical simulation results show that the proposed
system could achieve a significant improvement compared to existing systems such as the conventional
system without multiplying to the periodic code, the system with an additive dithering and a first order
sigma delta modulator.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction signals which occur most frequently, and vice versa. However, this
kind of quantization schemes requires a prior knowledge of the
Quantization is widely employed in many signal processing sys-  statistics of input signals. In many situations, the statistics of input
tems, such as in data compression [1] and analog to digital conver-  sjgnals are unknown and this method cannot be applied directly.
sion [2] systems. However, as the quantization is not a reversible Dithering is also a common method for reducing the quantiza-
process because it is a many to one mapping, signals cannot be  tjon noises. However, it worth noting that there are two main fun-
perfectly reconstructed after the quantization [3]. As a result, effi-  gamental differences between the system with an additive dither-
c1er}t ln;ethods for. thel reductlo.n of thel. qu.antlzatlon noise are very ing and the proposed system. First, in the system with an additive
usetul for many signal processing ap.p.lCi%tIOI]S. . . dithering, a white noise is added and subtracted before and after
The most common method to minimize the quantization noise . . . .
. e .. . the quantizer, respectively. On the other hand, a periodic code is
is to perform the quantization based on the statistics of input . . .
. - . . . multiplied before and after the quantizer in the proposed system.
signals [4]. Finer resolutions are assigned to the ranges of input . s . . . .
Just changing addition to multiplication will require a very differ-
ent analytical technique and come up to a very different result.
Statistical analysis of an additive noise can be performed easily
and plenty of the existing results can be applied. However, the ex-
isting techniques for analyzing multiplicative noise are limited and
this problem is theoretically challenging. Second, the introduced
noise in the additive dithering approach is a random process, while
the periodic code in the proposed system is a deterministic signal.
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Since these two signals are very different in nature, the analy-
sis of these two systems is also very different. In terms of the
computational effort and the cost of an implementation, since the
implementation of the system with an additive dithering requires
a random sequence, it is in general more difficult and costly. This
is because it is very difficult and costly to generate a truly ran-
dom signal with a uniform distribution. On the other hand, since a
simple potential divider can be employed for performing the mul-
tiplication of signals, the implementation of the proposed system
is easier and cheaper compared to the existing ones because the
periodic code can be stored in memory and only multiplications
are required.

Another approach similar to the dithering is via multiplying the
signals before and after the quantization by a pseudorandom bi-
nary sequence. However, this method is also different from our
proposed method. First, the pseudorandom signal is not optimally
designed. On the other hand, the proposed periodic code is op-
timally designed. Second, the pseudorandom signal is only repre-
sented by one bit, while our proposed periodic code is represented
by more than one bit. Hence, performances of our proposed sys-
tem are better than those with multiplying the signals before and
after the quantization by a pseudorandom binary sequence.

Sigma delta modulation is also widely used to minimize the
quantization noise [2,3,5-7,10,11]. If input signals are oversampled,
then the signals are bandlimited within a very narrow band [8].
By a proper design of the loop filter, the quantization noise can be
further shaped away from the signal band. Although this method
can sometimes achieve very high SNRs, many high order sigma
delta modulators suffer from the instability problem particularly
when the input magnitudes are close to the saturation level of the
quantizer [12-14].

In order to reduce the quantization noise with the guarantee of
the stability without the prior knowledge on the statistics of input
signals, this paper proposes to multiply signals before and after
the quantization by a periodic code. Here, the periodic code means
a periodic sequence. Periodic codes are widely employed in spread
spectrum communication systems. The motivation of the use of the
periodic code is based on the fact that the conventional system
without multiplying by the periodic code is actually a particular
case of the proposed system when the periodic code is equal to
one and the period of the code is also equal to one. Hence, the
proposed system is the generalization of the conventional system
and should achieve an improvement on the signal to noise (SNR)
ratio performance if the periodic code is designed properly. The
working principles of the proposed method are based on the fol-
lowing arguments. A periodic code can be represented using the
Fourier series. Multiplying the input signals by the periodic code
is equivalent to the weighted sums of the input signals modulated
at different harmonic frequencies. If the quantization operator can
be modeled by a polynomial function, then the quantizer performs
the weighted sums of the multiplications of the coded signals in
the time domain. In the frequency domain, the quantizer performs
the weighted sums of the convolutions of the coded signals. It is
worth noting that the convolutions of the modulated components
will result to the signal components with wider bandwidths and
shifting their center frequencies to other harmonic frequencies. Af-
ter multiplying the quantized signals by the same periodic code
and passing through a lowpass filter, all signal components cen-
tered at the higher harmonic frequencies will be discarded and
only the base band signal component is retained. Although alias-
ing still occurs in the base band, the effect of the aliasing due to
these higher order terms in the polynomial can be minimized by a
proper design of the periodic code.

In this paper, the input signal is assumed to be oversampled
and it is in the discrete time form. Instead of investigating the
analog to digital and digital to analog conversions, this paper is

Na |
aln)= Zak cos(kawy,n)
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Fig. 1. (a) Conventional system. (b) Proposed system with a periodic code.

to reduce the quantization noise in such a way that the stability
of the system is guaranteed without the prior knowledge on the
statistics of input signals. To achieve this goal, this paper proposes
to multiply the signals before and after the quantization by a pe-
riodic code. The outline of this paper is as follow. In Section 2, an
approximated model for the quantizer is introduced. Based on the
approximated model, detail noise analysis including the derivation
of a condition for achieving an improvement on the SNR perfor-
mance is presented in Section 3. In Section 4, a modified gradient
descent method is proposed for designing a periodic code such
that the SNR performance is maximized. The proposed method
can avoid the obtained solution to be trapped in a locally optimal
point and guarantee the convergence of the proposed algorithm.
In Section 5, numerical computer simulation results are presented.
Finally, a conclusion is drawn in Section 6.

2. Approximated quantization model

It is assumed in many quantization systems that the quantiza-
tion noise is modeled by an additive wide sense stationary white
noise source. The input of the quantizer is also assumed to be a
stationary random process. Each sample of the quantization error
is assumed to be uniformly distributed over the range of the quan-
tization step size and uncorrelated to the input of the quantizer.
Recently, the histogram of the quantizer output is derived analyt-
ically based on nonlinear system theories [10]. This result verifies
that the assumptions made in the conventional system are invalid
and far from practical situations especially for low bit quantizer
cases [10]. Hence, a deterministic model, instead of a statistical
model, is proposed in this paper.

The block diagrams of a conventional system and the proposed
system are shown in, respectively, Fig. 1a and Fig. 1b. Denote the
input of these two systems, the quantizer, the frequency response
of the linear time invariant filter, the output of the conventional
quantizer, the output of the quantizer of the proposed system, the
output of the conventional system and the output of the proposed
system as, respectively, u(n), Q(-), H(w), s1(n), sa(n), y1(n) and
y2(n). We assume that u(n) is oversampled. That means, u(n) is
bandlimited within the frequency spectrum (—%, %), where R is
the oversampling ratio (OSR). We also assume that H(w) is an
ideal lowpass filter. That is,

1 |wl <%,
H(w) = { R
@) 0 otherwise.

Consider an N bit uniform antisymmetric quantizer with the quan-
tization range [—L, L]. That is,
A sign(u(n))(ceil(1L®ly _ 1 m| <L,
menz[‘gﬂ“”( Pl — 1) ) M
sign(u(n))L [w@m)| > L,

where w(n) is the input of the quantizer,

()
st ={ 107
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Fig. 2. Input output relationships of actual quantizers with L =1 and the approximated quantizers ! (n)p with M = 10 for (a) N =1 bit, (b) N = 2 bit, (c) N = 3 bit and

(d) N =4 bit.

ceil(pu(n)) denotes the rounding operator towards the plus infin-
ity, |-| denotes the absolute operator, and A = ﬁ is the
step size of the quantizer. Since the quantizer is characterized
by a discontinuous nonlinearity, the overall system is very dif-
ficult to be analyzed. In order to analyze the overall system,
Q (u(n)) is approximated by a polynomial of w(n). Denote w(n) =
@ (um)* --- (um)*~"" and p=[p1 --- pml’, where
the superscript ' denotes the transposition operator, p;, € R for
m=1,2,...,M and 2M — 1 are, respectively, the coefficients and
the order of the polynomial, in which % denotes the set of real
valued numbers. Since all the coefficients of the model are real val-
ued, the proposed nonlinear model is a real valued system. p can
be found via minimizing the total energy difference between the
quantization function and the polynomial function subject to a
specification on the upper bound of the absolute difference. This
is actually a semi-infinite programming problem. Define the spec-
ification on the upper bound as %, where ¢ > 0. Then, the semi-
infinite programming problem can be expressed as follow:

L
min / [T mp — Q (um)]* dp(m), (2a)
—L

subject to IMT(n)p—Q(u(n))K% Vu(n) e [—-L, L], (2b)

and can be solved via the dual parameterization method [7]. Fig. 2
shows examples of input-output relationships of actual quantizers
with L =1 and the approximated quantizers u” (n)p with M =10
for N =1 bit, N =2 bit, N =3 bit and N =4 bit. Fig. 3 shows the
corresponding differences, that is Q (u(n)) — " (n)p. It can be seen
from Fig. 2 that the solutions of the semi-infinite programming
problems exist for N =1, 2, 3,4 bit when M = 10.

It is worth noting that when the number of bits of quantizer
increases, the accuracy of the model decreases if M remains un-

changed. However, as the coefficients of the model are the so-
lution of the semi-infinite programming problem, if the solution
of the semi-infinite programming problem exists, then the maxi-
mum absolute quantization error is guaranteed to be bounded by
a constant (%) multiplying by the quantization step. Or in other
words, the ratio of the maximum absolute quantization error to
the quantization step is bounded by % whenever the solution of
the semi-infinite programming problem exists. For N =1 bit, the
discontinuity point of the actual quantizer is at the origin. If the
magnitude of input signals is small and the linear model is applied,
then the difference between the output of the actual quantizer and
that based on the linear model will be very large. Hence, a linear
model is not appropriate for the approximation of low bit quan-
tizers. For high bit quantizers, according to the results shown in
Fig. 3, there are large errors and these large errors occur at the
neighborhood of discontinuity points of the actual quantizer. To
suppress these large errors, large values of M should be employed
instead. Hence, a linear model is also not appropriate for the ap-
proximation of high bit quantizers. In Fig. 3, we use the same
value of M for the illustration. This is because too large value of M
would increase the total number of terms in the model and hence
increase the computational effort for the design of the periodic
code. The details will be explained in the next section.

3. Noise analysis

Now, let’s analyze the quantization noise using the approxi-
mated model discussed in the previous section. That is, replace the
actual quantizer Q (;(n)) by the approximated quantizer T (n)p.
Denote the discrete time Fourier transform of u(n), s1(n), sy(n),
y1(n) and y,(n) as, respectively, U(w), S1(w), S2(w), Y1(w) and
Y, (w). Let the periodic code be a(n). Suppose that the periodic
code is real valued, symmetric and with zero DC gain. Let its
Fourier coefficients expressed in the cosine form be ai. Note that a



212 B.W.-K. Ling et al. / Digital Signal Processing 24 (2014) 209-222

1 0.5 0 0.5 1

Quantizer input

L N S B
o\g\\\

04 i i i
-1 -0.5 0 0.5 1
Quantizer input

Difference between two 3-bit quantizer outputs Difference between two 1-bit quantizer outputs

Fig. 3. The differences between the actual quantizers with L =1 and the approximated quantizers p” (n)p with M =10 for (a)

(d) N =4 bit.

real valued symmetric code can guarantee that aj are real valued.
This property facilitates the design of the code. Denote the length
of the code as 2N, + 1. Denote the fundamental frequency of
the periodic code as wg = 21@}% Then, a(n) = Z,’;’i] ay cos(kawon).
Define A(®) = Y3, axr (8(w — kax) + (@ + kax)), Usm—1(w) =
U) * -+ % U(w) and Aym_1(@) = A(w) * --- * A(w), where *
denotes the convolution operator Here, the convolution opera-
tor is defined as P(w) x Q (w) = 271 f P@®) * Q (w — 0)do, and
there are 2m — 1 terms in both Uj;,_1(w) and A2m,1 (w). Define
a=mla; --- an,]” and a, = [fliplr@T) 0 aT]7, where fliplr@@”) =
lan, -+ a1]. @y is a vector representing the coefficients of ;\(a))
at different harmonics. Let the discrete Fourier transform of a,, be
a;, and its kth element be ap (k). Denote a vector a, with the
kth element denoted as an, (k). Here, an (k) is defined as ap(k) =
(Gm(k))2™. Let the inverse discrete Fourier transform of a, be ay,
and the kth element be aj,(k). Obviously, a, is a vector repre-
senting the coefficients of Ayn(w) at different harmonics. Define
ay, =a,(Ng+1).

Theorem 1. Assume that Q (u(n)) ~ u' (n)p,
T
H(a))z{l lw| < R
0 otherwise,

wp = ZED ang 23, 4) f_R_ | Y=z PmUam—1(@)|*de >

ff% |Zm:2 Pmdj,Uam—1(w)|? dw. Then, the SNR of the coded system

shown in Fig. 1b will be higher than that of the conventional system
shown in Fig. 1a.

Proof. If Q (iu(n)) ~ uT (n)p, then we have
M
Y1(®) = H(@)S1(@) ~ H®) ) pmUzn—1() (3)

m=1

Quantizer input
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N =1 bit, (b) N = 2 bit, (c) N =3 bit and

for the conventional system shown in Fig. 1a. If we regard the first
order term (m = 1) in the signal band as the signal component and
all higher order terms (m > 2) in the signal band as the quantiza-
tion noise, then the SNR can be estimated as follows:

I, IH@p U (@)P do

SNR =~ 10log;g (4a)

S 1H@) SN o 1 @) do

Since H(w) is an ideal lowpass filter, we have:

Py fRz IU(w)]? dew
SNR~ 1010g19 —= R . (4b)

f_R% | Zm=2 pmUzm—1(w)|? dw

Now consider the coded system shown in Fig. 1b. Denote
the mput to the quantizer as i(n) and define U2m 1(w) =
U(w) * --- * U(w), where there are 2m — 1 terms in Uzp_1(®).
Since U(a)) = U(w) * A(a)) we have U2m 1(w) = Uyp—1(w) *
Asm_1(w). As we assume that Q(um) ~ u(m)p, we have

S2(®) ~ Y om_1 PmU2am—1(®) * Aym_1(w) and
M ~

Y2(@) ~ H(@) Y pmUzm—1() * Agm(@). (5)
m=1

As a result, we have:

S H@)p1U @) * B (@) doo

SNR~ 10logg —%
3

S IH@) Ehy puUzn—1 (@)  Azm (@) dw
(6a)

Since wqg > % and u(n) is bandlimited, the terms in
Usm—1(®) * Aam(w) for m=1,2,..., M at different harmonics do
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not overlap each others in the frequency spectrum. As H(w) is an
ideal lowpass filter, (6a) can be further simplified as:

reys D5
S 1H@) S (pnUon-1(@) % Aon(@)) 2 deo.
(6)

Since wy , u(n) is bandlimited and H(w) is an ideal
lowpass filter, we have:

|U(w) |2 dw

SNR =~ 10log;q

=

2 2M—1
> JT(R )

T
R

25N, %2 )
p; k=127 J_
SNR~ 10log1g — )
f_R% |Z¥=2 PmamUzm—1(@)? dw

|U(w)|2dw

A
R

(6¢)

2

dw

M
> pmUzn1(@)

M 2

> Pty Uzm—1 ()

m=2

g

i

> / do,
g
3

then the SNR of the coded system will be larger than that of the
conventional system. This completes the proof. O

4. Optimal periodic code design

In order to design an optimal code to maximize the SNR, a
modified gradient descent method similar to that in [9] is pro-
posed as follows:

Algorithm 1.

Step 1: Initialize iteration indices n =0 and t = 0. Generate a ran-
dom vector a% set I°=0, Ao = 1, N = 1000, N = 10 and
8§ =8 =1075. (These values are employed because they
are typical for most gradient descent methods and global
optimization algorithms.) Choose N, =40 and M = 10.
(The reasons for employing these values will be discussed
in Section 5.)

Step 2: Assume that u(k) =U sin(%). (The reason for employing
this input signal will also be discussed in Section 5.) Com-
pute a new periodic code a™! = a" — A, VaSNR|a—a» and
set Apt1 = @ﬁ# where

Vq,SNR

s
R

2
10 (akp%(z B [ V@) do

= az 7
PO\ ey, 92/ vePdo

M
+ pkU;k71 () Z pma;/—:] Uam-1 (a))) dw]

{rmnfe])

_
R

M
(Vaeam) (Pk Une1(@) Y mp Uz 4 (@)

m=2

\z\tl

=[x

M
Py Uzm—1(®)
m=2

VaSNR= [V, SNR - -+ Vg, SNR)T

and
2Ng+1
Ve, am = Z 2mWi, 11,9
q=1
Na
X (Z Wy, paN,+1-p + Wq,Na+1+pap>
p=1

X (Wq Ne+1—k + Wg Ny+14k)

in which W and W are the discrete Fourier transform ma-
trix and the inverse discrete Fourier transform matrix, re-
spectively, W 4 and Wp,q are the elements in the pth row
and the gth column of W and W, respectively, and py, for
m=1,2,..., M are obtained via solving the corresponding
semi-infinite programming problem [7].
Step 3: If |a™t! —a"| < &, then go to Step 4. Otherwise, increment
the value of n and go to Step 2.
Step 4: Denote I'"! = SNR| 1. If 0 < I'*1 — It < 8" and t > N, then
take a"™*! as the final approximated optimal solution. If
I+1 5 |t 4 &, then increment both the values of n and t,
set al = (1+ rf)a;1 where af is the ith element of a" and
rlF is a random scalar with uniform distribution between
[—0.5,0.5], and go to Step 2. If I't1 < [f, then set a"*! to
the vector a? where the index p is the index of a? when
calculating I. Then, add a random vector on it, increment
both the values of n and ¢, and go to Step 2.

In general, the gradient descent method is prone to divergence
and usually finds solutions that are only locally optimal. To avoid
the obtained solution being trapped in the locally optimal solution,
once an approximated locally optimal solution is found, a random
vector is added on it so that it is kicked out from the approximated
locally optimal solution and a new approximated locally optimal
solution is found. If the SNR of the current approximated locally
optimal solution is lower than that of the previous one, then the
current approximated locally optimal solution is discarded, the
code corresponding to the previous locally optimal solution is re-
used but a random vector is added on it and re-iterates the above
procedures. Since N is finite and the objective function is continu-
ous differentiable, there are finite number of local minima. Also, as
the obtained SNR is monotonic increasing, the proposed algorithm
guarantees to converge to the globally optimal solution if the ex-
act locally optimal solutions are found every time when Step 3 is
quitted.

In general, the convergence of the gradient descent method
would depend on A,. Small values of A, can guarantee the con-
vergence and vice versa. In fact, both the accuracy of the obtained
solution and the rate of the convergence are dependent on the val-
ues of Ao, N, 8, N, rf and §&’. Small values of § and A, can reach the
locally optimal solution with a high accuracy but with a slow rate
of convergence, and vice versa. In this paper, large values of A, are
employed in the early rounds of the iterations and vice versa so
that the algorithm can reach a neighborhood of the locally optimal
solution quickly and approach to the exact locally optimal solution
slowly if the algorithm converges. In the case that the algorithm
suffers from the divergence at the earlier stage, the value of g
should be re-chosen to a small value. In the case when the algo-
rithm suffers from the divergence during the intermediate stage,
the value of N should be re-chosen to a small value.

To kick out from the current locally optimal solution and reach
another better locally optimal solution, a random vector is added
to the current locally optimal solution. The location of the newly
generated searching vector depends on rf. If the value of rf is
chosen to be a small value, then the newly generated vector will
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Fig. 4. Coefficients of the code when R =32 for (a) N =1 bit, (b) N =2 bit, (c) N =3 bit and (d) N =4 bit.

be close to the current locally optimal solution. In this case, the
newly obtained locally optimal solution may be the same as the
old one. Then, it requires an extra iteration step to kick out from
the current locally optimal solution. This would increase the com-
putational effort of the algorithm. However, if the value of rf is
chosen to be a large value, then the newly generated vector will
move far away from the current locally optimal solution. In this
case, some locally optimal solutions near the current locally op-
timal solution may be missed out. Hence, this paper chooses an
intermediate value of rl? for the tradeoff reason. Also, the accuracy
of the obtained solution and the rate of the convergence depend
on both N and §. Small values of §' and large value of N can
improve the accuracy of the globally optimal solution but with a
slow rate of convergence, and vice versa. In this paper, conven-
tional values of N and &' employed in general global optimization
algorithms are chosen. Details are discussed in the next section.

5. Computer numerical simulation results

In this paper, the ideal lowpass filtering is implemented via
computing the discrete Fourier transform of the signals, retain-
ing the frequency components only within the frequency spectrum

T T

[—%. %] and computing the inverse discrete Fourier transform of

the filtered signals. Sinusoidal signals are employed as test inputs
because they are bandlimited within [—%, £1.

The following are the computer numerical simulation results of
the periodic codes. The saturation level of the quantizer is chosen
to be 1 due to the normalization reason. That is L = 1. The quantiz-
ers are the true quantizers with the discontinuous nonlinear func-
tions. We choose N, =40 and M = 10. These values are chosen
because too large values of N, and M would increase the computa-
tional effort. On the other hand, too small value of N; and M limits
the performance and cannot achieve good approximation model of
the quantizer, respectively. The input is chosen as the normalized

Sn sin( 15
maxvie>o(|Xaly sin(1357)])

sum of sinusoidal signals defined as u(k) =

By running Algorithm 1 at different number of bits of quantizers
and different OSRs, the periodic codes are obtained and shown in
Figs. 4 to 8. Since the coefficients of the approximate models are
obtained via solving the corresponding semi-infinite programming
problems, the coefficients of the approximated models for different
number of bits of the quantizer are different even though the val-
ues of M are the same. Also, the thermal noise dominates as OSR
increases. Hence, the obtained optimal periodic codes are different
for different OSRs.

In terms of the performance analysis, it is worth noting that
the proposed method would give worse results for large value of
N when the numerical computer simulations are performed at the
same value of M. This is because the number of terms of the poly-
nomial required to approximate the quantizer should be increased
as the number of bits of quantizer increases. As M remains un-
changed, the accuracy of the approximated model decreases. How-
ever, if the value of M is increased, then the computational effort
would increase. In order to tradeoff between the computational ef-
fort and the accuracy of the model, the same value M is employed
in the computer numerical simulations. By running Algorithm 1

3n sin( {5 )
maxyi>o (| el sin(135%))
quantizers (the quantizers are the true quantizers with the dis-
continuous nonlinear functions) with the same values of L (L =1),
as well as at the same values of N; (N, =40) and M (M = 10),
Fig. 9 shows the improvements on the SNR performance for differ-
ent number of bits of quantizers at different OSRs. It can be seen
from Fig. 9 that the improvements on the SNR performance de-
creases as N increases. Fig. 10 shows the improvements on the
SNR performance for different OSRs at different number of bits

> 1
of quantizers. Since (2 Z,’C\’il %)2 ff% 1M PnUam—1(w)[? dw —

with the same input (u(k) = , the same

(R I M S pma/,Usm—1(w)|? dw becomes smaller but the thermal
R
noise becomes larger as OSR increases, it can be seen from Fig. 10
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Fig. 6. Coefficients of the code when R =128 for (a) N =1 bit, (b) N =2 bit, (c) N =3 bit and (d) N =4 bit.

that there is no simple relationship between the improvements on shown in Fig. 11. Here, an additive white noise source with a uni-
the SNR performance and OSR. form distribution between [—1, 1] is added and subtracted before

To compare the performances of our proposed system, improve- and after the quantizer in the system with an additive dithering,
ments on the SNR performance of the proposed system over the respectively. Since the less tones in the input signal will result to
conventional system and the system with an additive dithering are the less spurious tones but with higher magnitudes in the quan-
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tizer output, we assume that the input signal is u(k) =U sin(zgr—Rk)

for k > 0. Here, U is the magnitude of the sinusoidal input. Since
the thermal noise would be dominated when the OSR is very large,
the comparison with very high OSR is not meaningful and R = 64
is employed for the comparison. The quantizer is assumed to be

a single bit antisymmetric one with the saturation level equal to

one. That is,

) 1
Q(y)E{

y =0,

—1 otherwise,
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and L = 1. This sinusoidal input and the quantizer are widely
employed for the evaluation in industries. The periodic codes em-
ployed in these numerical computer simulations consist of 40 co-
efficients with M = 10. Ng =40 with M =10 is employed because

of similar reasons discussed before. According to the numerical
computer simulation results, the proposed system could achieve
an average of 101 dB improvement over the conventional system
and an average of 85 dB improvement over the system with an
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Fig. 11. Improvements on the SNR performance of the proposed system over the
conventional system and the system with the additive dithering.

additive dithering. The proposed system achieves very significant
improvements over the system with an additive dithering and the
conventional system because the bandwidth of the input signal is
zero as the discrete time Fourier transform of the input signal is
the delta function. Hence, the overlap in the frequency domain
after the convolution is minimal and very high SNR ratio can be
achieved.

To compare the improvements on the SNR of the proposed
system over a first order sigma delta modulator, the loop filter
of the first order sigma delta modulator is realized via the state
space matrices A=1, B=1, C=1 and D =0 and the zero initial
condition is assumed to be zero. That is, x(0) = 0. A single bit an-
tisymmetric quantizer with the saturation level equal to one, that
is

iy 11 ¥y20,
L= { —1 otherwise,
and L =1, are employed for the illustration. The periodic code
employed in this numerical computer simulation consists of 40
coefficients with M = 10.Ng; = 40 with M = 10 is employed be-
cause of similar reasons discussed before. Consider the input signal
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Fig. 12. Improvement on the SNR performance of the proposed system over a first
order sigma delta modulator.

utk)=U sin(%") for k > 0, where R =64 and U is the magnitude
of the sinusoidal input. This input signal, OSR and the first order
loop filter are employed for an illustration because of the similar
reasons discussed in the above. It is worth noting that this first or-
der sigma delta modulator is not BIBO stable. This is because there
is a DC pole on the unit circle. The improvement on the SNR per-
formance of the proposed system over this first order sigma delta
modulator is shown in Fig. 12. It can be seen from Fig. 12 that the
proposed system achieves an average of 69 dB improvement over
this first order sigma delta modulator.

To test the robustness of the proposed method, variations on
the quantization levels, inputs with DC offsets and finite word
length effects on the periodic codes are considered. Since quanti-
zation levels are never exact in practical situations, improvements
on the SNR performance of the proposed system over the con-
ventional system and the system with an additive dithering for
nonexact quantization level cases are shown in Fig. 13. Similar to
the above, an additive white noise source with a uniform distri-
bution between [—1, 1] is added and subtracted before and after
the quantizer in the system with an additive dithering, respec-
tively. Same as the above, we assume that the input signal is
uk)y=U sin(zz‘LR") for k > 0, where R =64 and U is the magnitude

—— Compared to conventional approach
— Compared to dithering approach
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Fig. 13. Improvements on the SNR performance of the proposed system over the conventional system and the system with the additive dithering when L =0.99.
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Fig. 14. Improvements on the SNR performance of the proposed system over the conventional system and the system with the additive dithering when the input signal has

0.01 DC offset.
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Fig. 15. Improvements on the SNR performance of the proposed system over the conventional system and the system with the additive dithering when the periodic code is

represented using an 8 bit length.

of the sinusoidal input. The quantizer is assumed to be a single bit
antisymmetric one with the saturation level equal to 0.99. That is

099 y=>0,
—0.99 otherwise.

Q’(y)z{

The periodic codes employed in these numerical computer simu-
lations consist of 40 coefficients with M = 10. According to the
numerical computer simulation results, the proposed system could
achieve an average of 44 dB improvement over the conventional
system and an average of 27.8637 dB improvement over the sys-
tem with an additive dithering. Although there are drops in terms
of the improvements, the proposed system still achieves very sig-
nificant improvements over the system with an additive dithering
and the conventional system when the quantizer is not exact.
Besides, since input signals usually have DC offsets, improve-
ments on the SNR performance of the proposed system over the

conventional system and the system with an additive dithering
for input signals with DC offsets are shown in Fig. 14. Similar to
the above, an additive white noise source with a uniform distribu-
tion between [—1, 1] is added and subtracted before and after the
quantizer in the system with an additive dithering, respectively.
Now, we assume that there is a small DC offset in the input sig-
nal. That is, u(k) =0.01 + U sin(%) for k > 0. Same as the above,
R =64 and U is the magnitude of the sinusoidal input. The quan-
tizer is assumed to be a single bit antisymmetric one with the
saturation level equal to one. That is,

1 y=>0,
—1 otherwise,

Q'

and L = 1. The periodic codes employed in these numerical com-
puter simulations consist of 40 coefficients with M = 10. According
to the numerical computer simulation results, the proposed system
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Fig. 17. Histograms of the input of the quantizer, the output of the quantizer, the demodulated signal and the output of the proposed system.

could achieve an average of 52.2884 dB improvement over the con-
ventional system and an average of 36.1280 dB improvement over
the system with an additive dithering. Although there are drops
in terms of the improvements, the proposed system still achieves
very significant improvements over the system with an additive
dithering and the conventional system when there is a DC offset
in the input signal.

In addition, since the periodic code is usually stored in mem-
ory and it is represented using a finite length, improvements on

the SNR performance of the proposed system over the conven-
tional system and the system with an additive dithering when
the periodic code is represented using an 8 bits length are shown
in Fig. 15. 8 bits are used here because they are usually enough
for representing most signals. Similar to the above, an additive
white noise source with a uniform distribution between [—1, 1]
is added and subtracted before and after the quantizer in the sys-
tem with an additive dithering, respectively. The input signal is
uk) = Usin(zgiR") for k > 0. Same as the above, R =64 and U is
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the magnitude of the sinusoidal input. The quantizer is assumed to
be a single bit antisymmetric one with the saturation level equal
to one. That is,

/ 1 y=0,

Q= { —1 otherwise,

and L = 1. The periodic codes employed in these numerical com-
puter simulations consist of 40 coefficients with M = 10, but they
are represented using an 8 bit length. According to the numerical
computer simulation results, the proposed system could achieve an
average of 57.3593 dB improvement over the conventional system
and an average of 41.1132 dB improvement over the system with
an additive dithering. Although there are drops in terms of the
improvements, the proposed system still achieves very significant
improvements over the system with an additive dithering and the
conventional system when the periodic code is represented using
a finite length.

To understand more why the proposed system can achieve such
significant improvements, Fig. 16 shows the histograms of the in-
put signal, the quantized signal and the output of the conventional
system when a single bit antisymmetric quantizer with the satura-
tion level equal to one, that is

1 y=0
! — = )
QW= { —1 otherwise,
is employed. Same as the above, the input signal u(k) = U sin(23”—Rk)

for k > 0, where R =64 and U = 0.1. Fig. 17 shows the histograms
of the input of the quantizer, the output of the quantizer, the de-
modulated signal and the output of the proposed system with 40
coefficients. Here, M = 10. 40 coefficients with M = 10 is em-
ployed because of the similar reasons discussed in the above. It
can be seen from Fig. 16 that the dynamical range of the output
of the conventional system is between —1.27 and 1.27, which is
about 1200% of that of the input signal. Hence, the SNR ratio is
low. On the other hand, it can be seen from Fig. 17 that the dy-
namical range of the output of the proposed system has the same
dynamical range as that of the input signal. Hence, the proposed
system achieves higher SNR compared to the conventional one.

6. Conclusions

In this paper, a quantization model is proposed. The proposed
model is different from the conventional one because the conven-
tional one models the quantizer as an additive white noise source,
while the proposed one models the quantizer as a high order non-
linear memoryless system. A periodic code is multiplied to both
the input and output of the quantizer for reducing the quantization
noise. The condition for an improvement on the SNR is derived.
Moreover, an optimal periodic code is designed via a modified
gradient descent method. Numerical computer simulation results
show that there are significant improvements on the SNR perfor-
mances compared to existing systems such as the conventional
system without multiplying to the periodic code, the system with
an additive dithering and a first order sigma delta modulator. Be-
sides, the instability issue occurred in the sigma delta modulation
approach does not occur in the proposed system.
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